Super-resolution of Musical Signals Using Approximate Matching Pursuit
Brennan P. Keegan¹, Steven K. Tjoa², and K. J. Ray Liu¹
¹Signals and Information Group, Dept. of Electrical and Computer Eng., Univ. of Maryland – College Park, MD, USA
²Imagine Research, San Francisco, CA, USA

Introduction

Super-resolution is well-studied for video and images but not for musical signals.

One idea [Smaragdis, et al., 2009]: For each low-resolution (LR) input spectrum, find its coefficients with respect to a low-resolution basis. Using the same coefficients, reconstruct a high-resolution (HR) output from a high-resolution basis.

But what if you use a very large, overcomplete dictionary of real-world musical atoms?

We propose a super-resolution method using Approximate Matching Pursuit.

Approximate Matching Pursuit

See [Tjoa and Liu, ISMIR 2011].

Basic Idea: Inside matching pursuit, match using an approximate nearest neighbor (ANN) method, not exhaustive linear search.

1. Input: spectrum \(x \in \mathbb{R}^M \); dictionary \(D \in \mathbb{R}^{M \times K} \).
2. Output: coefficients \(s \in \mathbb{R}^K \).
3. Initialize: \(s \leftarrow 0 \); active set: \(S \leftarrow \emptyset \); residual \(r \leftarrow x \); threshold \(\epsilon > 0 \).
4. While \(||r|| > \epsilon \):
 a. Find any \(k \) such that dictionary atom \(a_k \) and residual \(r \) are “close enough”.
 b. Add atom to active set: \(S \leftarrow S \cup k \)
 c. Solve for \(\{s_j\}_{j \in S} \): \(\min_{\{s_j\}_{j \in S}} ||x - \sum_{j \in S} a_j s_j||_2 \)
 d. Update residual: \(r \leftarrow x - Ds \)
5. Return \(s \).

Evaluation: Start with ground-truth HR spectrogram, \(Y_0 \). Evaluate the reconstruction error, \(F = ||Y_0 - \hat{Y}||_F \).

Dictionary: Piano spectra from the U. Iowa Dataset.

Example

First five measures of Mozart’s “Rondo Alla Turca.” Spectrograms \(X \) (top) and \(D\hat{S} \) (bottom).

Proposed Super-resolution Method

1. Given a HR dictionary \(D \), truncate \(D \) in frequency to obtain the LR dictionary, \(D_\ell \).
2. Given LR input spectrogram \(X \) and LR dictionary \(D_\ell \), use AMP to obtain the coefficient matrix \(\hat{S} \).
3. Construct the HR output spectrogram, \(\hat{Y} = D\hat{S} \).

Experiments

1. \(F \) vs. number of LR frequency bins, \(M_{\text{low}} \) (synthetic input)
2. \(F \) vs. number of LR frequency bins, \(M_{\text{low}} \) (real musical input)
3. \(F \) vs. dictionary size, \(K \) (real musical input)

Conclusions

Super-resolution is achieved with a dictionary of musical spectra.

Proposed method works well for very LR inputs.

Larger dictionaries generally result in higher accuracy.

Future Work

• Test on heterogeneous musical inputs with acoustic overlap.
• Larger, more representative dictionaries.
• Use AMP for time-domain decomposition.
• Image and video processing.